Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 14: 1069411, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937522

RESUMEN

Background: The last few years have seen major advances in blood biomarkers for Alzheimer's Disease (AD) with the development of ultrasensitive immunoassays, promising to transform how we diagnose, prognose, and track progression of neurodegenerative dementias. Methods: We evaluated a panel of four novel ultrasensitive electrochemiluminescence (ECL) immunoassays against presumed CNS derived proteins of interest in AD in plasma [phosphorylated-Tau181 (pTau181), total Tau (tTau), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP)]. Two sets of banked plasma samples from the Massachusetts Alzheimer's Disease Research Center's longitudinal cohort study were examined: A longitudinal prognostic sample (n = 85) consisting of individuals with mild cognitive impairment (MCI) and 4 years of follow-up and a cross-sectional sample (n = 238) consisting of individuals with AD, other neurodegenerative diseases (OND), and normal cognition (CN). Results: Participants with MCI who progressed to dementia due to probable AD during follow-up had higher baseline plasma concentrations of pTau181, NfL, and GFAP compared to non-progressors. The best prognostic discrimination was observed with pTau181 (AUC = 0.83, 1.7-fold increase) and GFAP (AUC = 0.83, 1.6-fold increase). Participants with autopsy- and/or biomarker verified AD had higher plasma levels of pTau181, tTau and GFAP compared to CN and OND, while NfL was elevated in AD and further increased in OND. The best diagnostic discrimination was observed with pTau181 (AD vs CN: AUC = 0.90, 2-fold increase; AD vs. OND: AUC = 0.84, 1.5-fold increase) but tTau, NfL, and GFAP also showed good discrimination between AD and CN (AUC = 0.81-0.85; 1.5-2.2 fold increase). Conclusions: These new ultrasensitive ECL plasma assays for pTau181, tTau, NfL, and GFAP demonstrated diagnostic utility for detection of AD. Moreover, the absolute baseline plasma levels of pTau181 and GFAP reflect cognitive decline over the next 4 years, providing prognostic information that may have utility in both clinical practice and clinical trial populations.

2.
JAMA Netw Open ; 5(5): e2213253, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35604688

RESUMEN

Importance: Neurologic symptoms are common in COVID-19, but the central nervous system (CNS) pathogenesis is unclear, and viral RNA is rarely detected in cerebrospinal fluid (CSF). Objective: To measure viral antigen and inflammatory biomarkers in CSF in relation to neurologic symptoms and disease severity. Design, Setting, and Participants: This cross-sectional study was performed from March 1, 2020, to June 30, 2021, in patients 18 years or older who were admitted to Sahlgrenska University Hospital, Gothenburg, Sweden, with COVID-19. All patients had CSF samples taken because of neurologic symptoms or within a study protocol. Healthy volunteer and prepandemic control groups were included. Exposure: SARS-CoV-2 infection. Main Outcomes and Measures: Outcomes included CSF SARS-CoV-2 nucleocapsid antigen (N-Ag) using an ultrasensitive antigen capture immunoassay platform and CSF biomarkers of immune activation (neopterin, ß2-microglobulin, and cytokines) and neuronal injury (neurofilament light protein [NfL]). Results: Forty-four patients (median [IQR] age, 57 [48-69] years; 30 [68%] male; 26 with moderate COVID-19 and 18 with severe COVID-19 based on the World Health Organization Clinical Progression Scale), 10 healthy controls (median [IQR] age, 58 [54-60] years; 5 [50%] male), and 41 patient controls (COVID negative without evidence of CNS infection) (median [IQR] age, 59 [49-70] years; 19 [46%] male) were included in the study. Twenty-one patients were neuroasymptomatic and 23 were neurosymptomatic (21 with encephalopathy). In 31 of 35 patients for whom data were available (89%), CSF N-Ag was detected; viral RNA test results were negative in all. Nucleocapsid antigen was significantly correlated with CSF neopterin (r = 0.38; P = .03) and interferon γ (r = 0.42; P = .01). No differences in CSF N-Ag concentrations were found between patient groups. Patients had markedly increased CSF neopterin, ß2-microglobulin, interleukin (IL) 2, IL-6, IL-10, and tumor necrosis factor α compared with controls. Neurosymptomatic patients had significantly higher median (IQR) CSF interferon γ (86 [47-172] vs 21 [17-81] fg/mL; P = .03) and had a significantly higher inflammatory biomarker profile using principal component analysis compared with neuroasymptomatic patients (0.54; 95% CI, 0.03-1.05; P = .04). Age-adjusted median (IQR) CSF NfL concentrations were higher in patients compared with controls (960 [673-1307] vs 618 [489-786] ng/L; P = .002). No differences were seen in any CSF biomarkers in moderate compared with severe disease. Conclusions and Relevance: In this study of Swedish adults with COVID-19 infection and neurologic symptoms, compared with control participants, viral antigen was detectable in CSF and correlated with CNS immune activation. Patients with COVID-19 had signs of neuroaxonal injury, and neurosymptomatic patients had a more marked inflammatory profile that could not be attributed to differences in COVID-19 severity. These results highlight the clinical relevance of neurologic symptoms and suggest that viral components can contribute to CNS immune responses without direct viral invasion.


Asunto(s)
COVID-19 , Adulto , Antígenos Virales , Biomarcadores/líquido cefalorraquídeo , Estudios Transversales , Femenino , Humanos , Interferón gamma , Masculino , Persona de Mediana Edad , Neopterin/líquido cefalorraquídeo , Proteínas de Neurofilamentos , ARN Viral , SARS-CoV-2
3.
J Immunol ; 185(2): 1037-44, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20554958

RESUMEN

Activation of a naive T cell is a highly energetic event, which requires a substantial increase in nutrient metabolism. Upon stimulation, T cells increase in size, rapidly proliferate, and differentiate, all of which lead to a high demand for energetic and biosynthetic precursors. Although amino acids are the basic building blocks of protein biosynthesis and contribute to many other metabolic processes, the role of amino acid metabolism in T cell activation has not been well characterized. We have found that glutamine in particular is required for T cell function. Depletion of glutamine blocks proliferation and cytokine production, and this cannot be rescued by supplying biosynthetic precursors of glutamine. Correlating with the absolute requirement for glutamine, T cell activation induces a large increase in glutamine import, but not glutamate import, and this increase is CD28-dependent. Activation coordinately enhances expression of glutamine transporters and activities of enzymes required to allow the use of glutamine as a Krebs cycle substrate in T cells. The induction of glutamine uptake and metabolism requires ERK function, providing a link to TCR signaling. Together, these data indicate that regulation of glutamine use is an important component of T cell activation. Thus, a better understanding of glutamine sensing and use in T cells may reveal novel targets for immunomodulation.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glutamina/metabolismo , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Alanina Transaminasa/metabolismo , Sistema de Transporte de Aminoácidos A/genética , Sistema de Transporte de Aminoácidos A/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Transporte Biológico/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/genética , Flavonoides/farmacología , Citometría de Flujo , Glutamato Deshidrogenasa/metabolismo , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/farmacocinética , Glutamina/farmacología , Ácidos Cetoglutáricos/metabolismo , Activación de Linfocitos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/inmunología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/citología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...